Addition

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too. E.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven. Children will need to know all 'number stories' about number to 10. E.g. $\begin{aligned} & 1+6=7 \\ & 2+5=7 \\ & 3+4=7 \end{aligned}$ Etc.
Counting on using number lines using cubes or Numicon.	A Bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and $2 ? 4+27$

Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $6+5$ 0 0 8 0 	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{gathered} 6+\square=11 \\ 6+5=5+\square \\ 6+5=\square+4 \end{gathered}$
TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$41+8$ Or written: $\begin{gathered} : 20+30=50 \\ 6+3=9 \\ 26+33=59 \end{gathered}$
TO + TO using base 10. Continue to develop understanding of partitioning and place value. Using Diene's or Counters	Children to represent the base 10 in a place value chart.	Looking for ways to make 10 .

	Or using a number line to add ones first, then tens. $26+33=59$	Or using abstract mental methods. $26+33=59$
Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1 s columnwe exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred. Using Diene's or Counters.	Chidren to represent the counters or Diene's in a place value chart, circling when they make an exchange.	Children to use the formal method of addition. $\begin{array}{r} 243 \\ +368 \\ \hline 611 \\ \hline 47 \end{array}$ Children to also use formal methods
	If the children are completing a word problem, draw a bar model to represent what it's asking them to do.	$\begin{array}{r} 4.3 \\ +36.8 \\ \hline 41.1 \\ \hline 47 \end{array}$ Children should be shown to be lining
	243 368	zeros if they would like to.

Fluency variation, different ways to ask children to solve 21+34:

Subtraction

Physically taking away and removing objects from a
whole (ten frames, Numicon, cubes and other items

such as beanbags could be used). | Children to draw the concrete resources they are |
| :---: |
| using and cross out the correct amount. The bar |
| model can also be used. |

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .

Making numbers within 10 or 20 using ten frames.

$$
14-5
$$

Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.

Children to present the ten frame pictorially and discuss what they did to make 10.

Find the difference between 8 and 5 .
$8-5$, the difference is \square
Children to explore why
$9-6=8-5=7-4$ have the same difference.

$$
14-5=9
$$

You also want children to see related
facts. E.g. 15-9 = 4
Children to represent how they have solved it. E.g.

5 is made up of 4 and 1 , so I can subtract 4 to make 10 , and then 1 to get subtract 4 to make 9

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition $\begin{gathered} 3 \times 4 \\ 4+4+4 \end{gathered}$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\begin{gathered} 3 \times 4=12 \\ 4+4+4=12 \end{gathered}$
Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially. 00 00 00000 00 00000 00 00	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$

Division

Use of the 'bus stop method' to show short division.

$$
5 \stackrel{123}{6^{1} 1^{\prime} 5}
$$

Additionally, children should be shown how remainders can be turned into decimals at the end.

$$
4 \longdiv { 1 3 5 . 5 }
$$

Long Division

1) exchange two thousands for 20 hundreds, so we now have 25 hundreds.

02 2) How many groups of 12 can I make with 25 hundreds? The 24 shows the hundreds we have grouped. The one is how many

122544

24
 1

021
12|2544
24
14
12
3) Exchange the one hundred for 10 tens. How many groups of 12 can I make with 14 tens? The 14 shows how many tens

0212

 undreds we have left.
Abstract

I have, the 12 is how many I grouped and the 2 is how many tens I have left.

2544
24 14 12 24
24
4) Exchange the 2 tens for 20 ones. The 24 is how many ones I
have grouped and the 0 is what I have left.

Fluency variation, different ways to ask children to solve 615 $\div 5$
Using the part whole model below, how can you I have $£ 615$ and share it equally between 5 bank divide 615 by 5 without using short division?
 accounts. How much will be in each account?
$5 \longdiv { 6 1 5 }$
615 pupils need to be put into 5 groups. How many will be in each group?

```
615\div5=
{={=615 % 5
```

